An Ensemble Methods for Medical Insurance Costs Prediction Task

نویسندگان

چکیده

The paper reports three new ensembles of supervised learning predictors for managing medical insurance costs. open dataset is used data analysis methods development. usage artificial intelligence in the management financial risks will facilitate economic wear time and money protect patients’ health. Machine associated with many expectations, but its quality determined by choosing a good algorithm proper steps to plan, develop, implement model. aims develop individual costs prediction provide high accuracy. Pierson coefficient Boruta are feature selection. boosting, stacking, bagging built. A comparison existing machine algorithms given. Boosting modes based on regression tree stochastic gradient descent Bagged CART Random Forest proposed. boosting stacking shown better accuracy than bagging. tuning parameters do not allow decrease RMSE too. So, shows weakness generalizing prediction. developed using K Nearest Neighbors (KNN), Support Vector (SVM), Regression Tree, Linear Regression, Stochastic Gradient Boosting. random forest (RF) combine predictions. One hundred trees built RF. Root Mean Square Error (RMSE) has lifted 3173.213 other predictors. ensemble Squared metric 1.47 best weak predictor (SVR).

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

an application of fuzzy logic for car insurance underwriting

در ایران بیمه خودرو سهم بزرگی در صنعت بیمه دارد. تعیین حق بیمه مناسب و عادلانه نیازمند طبقه بندی خریداران بیمه نامه براساس خطرات احتمالی آنها است. عوامل ریسکی فراوانی می تواند بر این قیمت گذاری تاثیر بگذارد. طبقه بندی و تعیین میزان تاثیر گذاری هر عامل ریسکی بر قیمت گذاری بیمه خودرو پیچیدگی خاصی دارد. در این پایان نامه سعی در ارائه راهی جدید برای طبقه بندی عوامل ریسکی با استفاده از اصول و روش ها...

Ensemble Methods for Structured Prediction

We present a series of learning algorithms and theoretical guarantees for designing accurate ensembles of structured prediction tasks. This includes several randomized and deterministic algorithms devised by converting on-line learning algorithms to batch ones, and a boosting-style algorithm applicable in the context of structured prediction with a large number of labels. We give a detailed stu...

متن کامل

Hierarchical Ensemble Methods for Protein Function Prediction

Protein function prediction is a complex multiclass multilabel classification problem, characterized by multiple issues such as the incompleteness of the available annotations, the integration of multiple sources of high dimensional biomolecular data, the unbalance of several functional classes, and the difficulty of univocally determining negative examples. Moreover, the hierarchical relations...

متن کامل

Development of an Ensemble Multi-stage Machine for Prediction of Breast Cancer Survivability

Prediction of cancer survivability using machine learning techniques has become a popular approach in recent years. ‎In this regard, an important issue is that preparation of some features may need conducting difficult and costly experiments while these features have less significant impacts on the final decision and can be ignored from the feature set‎. ‎Therefore‎, ‎developing a machine for p...

متن کامل

an application of equilibrium model for crude oil tanker ships insurance futures in iran

با توجه به تحریم های بین المملی علیه صنعت بیمه ایران امکان استفاده از بازارهای بین المملی بیمه ای برای نفتکش های ایرانی وجود ندارد. از طرفی از آنجایی که یکی از نوآوری های اخیر استفاده از بازارهای مالی به منظور ریسک های فاجعه آمیز می باشد. از اینرو در این پایان نامه سعی شده است با استفاده از این نوآوری ها با طراحی اوراق اختیارات راهی نو جهت بیمه گردن نفت کش های ایرانی ارائه نمود. از آنجایی که بر...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers, materials & continua

سال: 2022

ISSN: ['1546-2218', '1546-2226']

DOI: https://doi.org/10.32604/cmc.2022.019882